Moesin, like ezrin, colocalizes with actin in the cortical cytoskeleton in cultured cells, but its expression is more variable.
نویسندگان
چکیده
The band 4.1 superfamily of proteins show approx. 30% sequence identity in their amino-terminal region to the membrane binding domain of erythrocyte band 4.1. Within this superfamily are three members, ezrin, radixin and moesin, that show approx. 75% overall sequence identity. A comparison of the domain structure and intracellular localization of ezrin and moesin in cultured cells is reported here. Limited proteolytic digestion of ezrin or moesin yields a relatively stable 32 kDa domain derived from the amino-terminal region that is homologous to the protease-resistant membrane binding domain of erythrocyte band 4.1. The remaining regions of the two proteins give rise to very different fragments, suggesting that the secondary/tertiary structures of the two proteins are different in these regions. We have generated polyclonal antibodies that discriminate between ezrin and moesin, and do not react with radixin. All cultured cell lines investigated contain ezrin, whereas moesin is variably expressed. Cells that contain both ezrin and moesin show a very similar pattern: both proteins are enriched and colocalize with actin in cell surface structures. Ezrin is also detected in the cytoplasm. In cells with few or no surface structures, both proteins show a patchy distribution in regions of the cell that contain fine networks of actin filaments. No staining of focal contacts or adherens junctions was observed. These results, together with those of others, lead to the conclusion that, of the members of this protein family, only radixin is an authentic component of adherens junctions and focal contacts. Ezrin and moesin are both found in cell surface structures after treatment of human A431 cells with epidermal growth factor, and ezrin, but not moesin, becomes phosphorylated on tyrosine. This study shows that ezrin and moesin have a similar subcellular distribution in cultured cells, yet are distinguishable in their expression, structure and ability to serve as a kinase substrate.
منابع مشابه
Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells.
Ezrin and moesin are two cytoskeletal proteins originally purified from human placenta that are 74% identical in overall protein sequence. They are believed to be membrane-cytoskeletal linking proteins because they share sequence homology with erythrocyte band 4.1 and colocalize with actin specifically in microvilli and membrane ruffles in cultured cells. To determine if ezrin and moesin share ...
متن کاملIdentification of EBP50: A PDZ-containing Phosphoprotein that Associates with Members of the Ezrin-Radixin-Moesin Family
Members of the ezrin-radixin-moesin (ERM) family of membrane-cytoskeletal linking proteins have NH2- and COOH-terminal domains that associate with the plasma membrane and the actin cytoskeleton, respectively. To search for ERM binding partners potentially involved in membrane association, tissue lysates were subjected to affinity chromatography on the immobilized NH2-terminal domains of ezrin a...
متن کاملEzrin Mediates Neuritogenesis via Down-Regulation of RhoA Activity in Cultured Cortical Neurons
Neuronal morphogenesis is implicated in neuronal function and development with rearrangement of cytoskeletal organization. Ezrin, a member of Ezrin/Radixin/Moesin (ERM) proteins links between membrane proteins and actin cytoskeleton, and contributes to maintenance of cellular function and morphology. In cultured hippocampal neurons, suppression of both radixin and moesin showed deficits in grow...
متن کاملMechanisms Underlying Cancer Progression Caused by Ezrin Overexpression in Tongue Squamous Cell Carcinoma
BACKGROUND Ezrin is a member of the ezrin, radixin, and moesin family that provides a functional link between the plasma membrane and the cortical actin cytoskeleton. A correlation between ezrin overexpression and aggressive cancer behavior has been recently reported in various tumor types. However, its roles in the mechanisms underlying progression of tongue squamous cell carcinoma (SCC) are u...
متن کاملMoesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion.
Tumour cell dissemination through corporal fluids (blood, lymph and body cavity fluids) is a distinctive feature of the metastatic process. Tumour cell transition from fluid to adhesive conditions involves an early polarization event and major rearrangements of the submembrane cytoskeleton that remain poorly understood. As regulation of cortical actin-membrane binding might be important in this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 105 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1993